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Abstract: To tackle the challenges of achieving global coverage, enhancing navigation accuracy within covered
regions, and simplifying constellation design for low-Earth-orbit navigation augmentation systems, a multi-objective
associated chromosome non-dominated sorting genetic algorithm is introduced. The algorithm meticulously analyzes
onboard and spatial constraints, designs decision variables in accordance with constellation configuration characteristics
and mission planning requirements, and formulates an objective function to comprehensively evaluate constellation
coverage performance and navigation accuracy. During implementation, the population is initialized using the Cubic
mapping method. Crossover and mutation operations are conducted based on an associated chromosome strategy, while
offspring are updated through an adaptive mutation mechanism. An approximate Pareto front surface for the multi-objective
problem is constructed through non-dominated sorting and crowding distance calculations, thereby optimizing constellation
coverage and navigation accuracy concurrently. Simulation results indicate a uniform distribution of weight points on the
drawn approximate Pareto surface. Compared to genetic and particle swarm algorithms, the proposed algorithm exhibits a
notable reduction in convergence generations and yields a superior approximate optimal solution value. The model’ s
accuracy and the algorithm’s superiority are effectively validated through integration with a simulation platform.
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Table 1  Rules for coding decision variables for hybrid track

optimization design
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Table 2 Basic parameters of constellation design
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Table 3 Comparison of optimization results in one simulation
LI = AT 1 TR IR 22 (H wARME BT E SRR EREEE WSt
GA 91.315 4.435 3.972 0.196 3.729 99
600 km + 800 km PSO 11.292 4.385 3.932 0. 153 3.798 110
SOECGA 89. 152 4.316 3.769 0. 204 3.611 69
GA 18. 833 3.376 2.965 0. 140 2.785 100
700 km + 900 km PSO 5.720 3.280 2.913 0.138 2.807 82
SOECGA 118. 008 3.197 2. 895 0.110 2.751 106
GA 6. 867 2.573 1.958 0.143 1. 847 87
800 km + 1 000 km PSO 2.821 2.469 2.022 0. 140 1.914 114
SOECGA 116. 377 2.380 1. 878 0.177 1. 759 63
GA 4. 626 2.443 1. 620 0.279 1. 331 90
900 km + 1 100 km PSO 5.358 2.390 1. 644 0. 327 1.369 92
SOECGA 52.227 1. 884 1.416 0.115 1.276 97
R4 ISWPTHLE GRS L
Table 4 Comparison of statistics for 20 simulation experiments
BUIE = A BSEEFYE GDOPVME Wb E R R mliirimks PRt
GA 53.23% 3.299 3.570 3.430 0. 084 94
600 km + 800 km PSO 54.47% 3.336 3. 644 3.451 0.135 84
SOECGA 54.21% 3.187 3.423 3.376 0. 037 87
GA 88. 06% 3.481 2. 695 2.566 0. 056 104
700 km + 900 km PSO 82.34% 3.402 3.232 2.996 0.122 72
SOECGA 84.53% 2.813 2.515 2.472 0.110 88
GA 99. 56% 2.698 1. 675 1. 636 0. 020 89
800km + 1000 km PSO 98. 83% 2.722 1.733 1. 665 0.043 79
SOECGA 99. 64% 2.636 1.635 1.595 0.023 86
GA 99. 98% 2.114 1.292 1.269 0.012 94
900 km + 1 100 km PSO 99. 62% 2. 155 1.336 1.297 0.001 77
SOECGA 100. 00% 2. 094 1.262 1. 256 0. 005 87
KSR EIE AR A A 4
Table 5  Sets of optimal solutions for a single simulation
h=2 PUIEH A MEDEY BB A% HABL K BUEM/C) T 5 5K A7)
1 600 km + 800 km 55 +25 5+5 3+1 50.63 + 75.94 112.5 + 157.5
2 700 km + 900 km 40 + 40 5+5 1+1 36.59 + 79.75 135 + 45
3 800 km + 1 000 km 55 +25 5+5 3+4 64.69 + 19.69 0+675
4 900 km + 1 100 km 55 +25 5+5 1+4 61.87 + 25.31 112.5 + 135

6 ATURIY 50 BV 5 B RS0 A F AR R X

Table 6 Comparison of objective function values obtained from the proposed model and simulation platform validation experiments

¥ HLaEH A B A IR SRR 3R 35 X 4k GDOP F- {1
AR SRR TR S 5 60. 48% 3.46
1 600 km + 800 km o
-5 50 E S 5 62.33% 3.84
AR SR Y S 89. 76% 2.91
2 700 km + 900 km )
-5 50 IE S0 88. 63% 3.16
AR SRR S 5 99. 92% 2.61
3 800 km + 1 000 km .
V- £ 56 I 52 5 98.79% 2.73
AR SCA R S 5 100% 2.07
4 900 km + 1 100 km ]
B IR 5 100% 2.12
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Fig. 10  Global navigation accuracy distribution
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