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Abstract: This paper studies the distributed formation control problem for multiple un-
manned aerial vehicles (UAVs), focusing on preserving connectivity and avoiding obstacles
within the constraints of a limited communication distance and in the presence of multiple
dynamic obstacles. The UAV network is modeled as a proximity graph, where the edges
are defined by the distances between the UAVs. A hierarchical control strategy is employed
to manage the position and attitude subsystems independently. A distributed position
formation controller is developed for the position subsystems, utilizing bounded artificial
potential functions to preserve the network connectivity and avoid collisions between
UAVs while achieving the desired formation. The position controller also integrates a
time-varying sliding manifold and obstacle avoidance potential functions to prevent col-
lisions with dynamic obstacles. Additionally, an attitude controller is designed for the
attitude subsystem to track the desired attitude angles generated by the positioning subsys-
tem. Numerical simulations validate that the proposed controllers effectively preserve the
communication network’s connectivity, avoid collisions between the UAVs and dynamic
obstacles, and achieve the desired formation simultaneously.

Keywords: unmanned aerial vehicles (UAVs); formation control; connectivity preservation;
distributed control; obstacle avoidance

1. Introduction
In recent years, academic interest in multiple unmanned aerial vehicles (UAVs) has

surged, driven by their potential applications in areas such as remote sensing, search
and rescue, traffic monitoring, multi-lifting, and video surveillance [1–7]. Unlike a single
UAV, multiple UAVs can operate in parallel, making them more efficient in tasks like
large-area surveillance or search and rescue in a collapsed building [8–12]. Research on the
formation control of multiple UAVs has intensified, with a significant shift from centralized
to distributed control approaches [13,14]. However, developing distributed formation
controllers remains a challenge, as each UAV has access only to local information.

The connectivity of the communication network is crucial in designing a distributed
controller for multiple quadrotor UAVs. Many of the existing studies have traditionally
presupposed the connectivity of the communication graph, whether directed or undirected,
throughout the formation control processes of UAV clusters [15,16]. For instance, ref. [16]
presented a robust distributed formation control method for quadrotor teams, addressing
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communication delays, nonlinear dynamics, and external disturbances and achieving finite-
time convergence of the tracking errors, with experimental validation. Similarly, the work
in [17] outlines a hierarchical distributed formation tracking control algorithm for leader-
following quadrotors, ensuring asymptotic stability, and demonstrates its effectiveness
through simulations and experiments. Event-triggered time-varying or time-invariant
formation controllers were also developed for multiple UAVs in [18,19]. Additionally,
ref. [20] proposed a collision-resilient control scheme for quadrotors which incorporated a
nonlinear disturbance observer and a tilt–torsion decomposition-based attitude controller
and was validated through simulations and flight tests. Fault detection and fault-tolerant
cooperative control strategies were proposed in [21] for multiple UAVs under actuator
faults, sensor faults, and wind disturbances. The distributed formation control design
problem for multiple UAVs with a switching interaction topology was studied further
in [22–24], where the graph was jointly connected. However, the implementation of
connectivity in distributed formation control has often been overlooked, with many studies
assuming continuous [25,26] or intermittent [27,28] network connectivity.

Due to the limited communication range and mobility of UAVs, disruptions in the
communication network can occur, hindering formation control of UAVs. Therefore, en-
suring network connectivity is essential when designing distributed formation controllers
for multiple UAVs. Connectivity preservation control refers to the process of ensuring
that the communication network among multiple agents remains intact and functional by
preserving appropriate relative distances and avoiding obstacles, even in dynamic environ-
ments. Preserving the connectivity assumptions is challenging in the presence of a limited
communication range. Over the past decade, extensive research has been conducted on
connectivity preservation in multi-agent systems [29,30]. Nevertheless, most of the existing
results have focused on first-order [31] and second-order models [32–35] without address-
ing the connectivity preservation problems in nonlinear dynamic systems, such as those
in UAV applications. The issue of connectivity preservation for multiple UAVs presents
distinct challenges compared to multi-agent systems in two primary ways [36]. While
most studies on multi-agent systems have focused on achieving a consensus, connectivity
preservation in UAV formation control must account for the complexities of the formation-
specific objectives. Unlike the predominantly linear modeling of multi-agent systems, UAV
formation control deals with nonlinear dynamics, adding further complexity to connectivity
maintenance. Recently, a local connectivity preservation controller for multi-quadrotor air-
craft was studied. Recent efforts have introduced local connectivity preservation controllers
for multi-quadrotor UAVs [37], as well as a novel approach to maintaining connectivity in
UAV systems with bounded actuation and a limited communication range [36]. Recently,
advanced decision-making models for connected autonomous vehicles (CAVs) focusing
on human-like driving behaviors, game-theoretic frameworks, and risk assessments to
enhance lane change decisions, coordination at unsignalized intersections, and interactions
with human-driven vehicles in mixed traffic environments were proposed in [38–40].
However, the above literature did not consider the effect of obstacles.

Obstacle avoidance is another problem to address when controlling multiple UAVs.
Designing distributed controllers that account for obstacles adds complexity, but recent
studies have made progress in achieving the desired UAV formations despite these difficul-
ties [41–43]. Moreover, when UAVs perform obstacle avoidance tasks, the communication
network’s connectivity may be compromised. Therefore, it is crucial to simultaneously
address connectivity preservation and obstacle avoidance in the design of distributed
controllers for multiple UAVs. Some research has approached this issue. For example, a
bounded controller for a multi-robot system was developed to preserve the network con-
nectivity in the presence of obstacles [44]. Similarly, an adaptive tracking control scheme for
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spacecraft formation flying integrated inter-collision avoidance, obstacle dodging, and con-
nectivity preservation [45]. Other studies have investigated time-varying output formation
tracking problems with collision avoidance, obstacle dodging, and connectivity preserva-
tion in high-order multi-agent systems [46]. However, these works have been limited by
their focus on static obstacles. The central challenge of this work is to develop a distributed
connectivity preservation and obstacle avoidance controller for multiple UAVs, specifically
in the context of dynamic obstacles.

Motivated by the practical challenges of preserving connectivity and avoiding dynamic
obstacles in UAV formations, this paper presents a distributed controller for multiple
quadrotor UAVs with communication distance limitations and multiple dynamic obstacles.
The approach involves developing a novel formation potential function and an obstacle
avoidance potential function, which, combined with a sliding mode control method, enable
the design of a distributed position controller. This controller ensures network connectivity,
prevents collisions between the UAVs and obstacles, and achieves the desired formation.
Additionally, an attitude tracking controller is designed to generate the required control
forces, ensuring accurate attitude tracking. Together, these elements address the core
challenges of connectivity preservation, obstacle avoidance, and formation control in
dynamic environments.

This paper offers three key contributions:

(1) Unlike traditional distributed cooperative controllers [47–49] that assume a continuously
connected network, the proposed connectivity preservation method only requires an
initially connected network, even with communication distance limitations.

(2) While previous studies like [37] have focused solely on collision avoidance and
connectivity preservation among UAVs, this controller also tackles obstacle avoidance
between UAVs and external obstacles.

(3) In contrast to the existing static obstacle avoidance schemes reviewed in [44–46],
the proposed control law addresses dynamic obstacle avoidance by utilizing dynamic
surface control and a repulsive potential function. This work represents one of the
first approaches to simultaneously handling the distributed control of quadrotor
UAVs, connectivity preservation, and dynamic obstacle avoidance.

This paper is organized as follows: Section 2 outlines the position and attitude dynam-
ics of quadrotor UAVs and proposes a dynamic communication network model. In Section 3,
the potential functions and the distributed position controller are developed, followed by
the attitude tracking controller in Section 3.3. Section 4 presents numerical simulations to
validate the efficacy of the controllers. Finally, this paper concludes with a summary in
Section 5.

2. Preliminaries and the Problem Statement
This section introduces the dynamics of quadrotor UAVs and presents key concepts

from algebraic graph theory. In addition, a dynamic graph model of the UAVs’ communi-
cation network is developed.

2.1. The Dynamics of Quadrotor UAVs

Consider two reference frames: (1) an inertial frame FI = {OI xIyIzI}, whose origin
OI is fixed at a specific point on Earth, and (2) a body frame FBi =

{
OBi xBi yBi zBi

}
, whose

origin OBi coincides with the fuselage center of gravity of the ith UAV. The relations between
these two frames are shown in Figure 1. The position dynamics of the ith UAV in the inertial
frame FI can be modeled as [37,50]

mi p̈i = −Di ṗi − mige3 + TiRie3, i = 1, . . . , N (1)
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where mi denotes the total mass of the ith UAV; pi = [pi,x, pi,y, pi,z]
⊤ represents its position;

ṗi = [ṗi,x, ṗi,y, ṗi,z]
⊤ is the velocity; p̈i = [ṗi,x, ṗi,y, ṗi,z]

⊤ is the acceleration in the inertial
frame FI ; Di = Diag(Di,x, Di,y, Di,z) represents the aerodynamic damping coefficients;
g = 9.81 m/s2 is referred to as the acceleration of gravity; and e3 = [0, 0, 1]⊤ ∈ R3. N
denotes the number of UAVs. The term Ti is the total lift generated by the four propellers,
and Ri is the rotation matrix that transforms the vectors from the body FBi into the inertial
frame FI , expressed as

Ri =

 cos θi cos ψi sin ϕi sin θi cos ψi − cos ϕi sin ψi cos ϕi sin θi cos ψi + sin ϕi sin ψi

cos θi sin ψi sin ϕi sin θi sin ψi + cos ϕi cos ψi cos ϕi sin θi sin ψi − sin ϕi cos ψi

− sin θi sin ϕi cos θi cos ϕi cos θi

,

where θi, ϕi, and ψi denote the roll, pitch, and yaw angles, respectively.

The inertial frame

The body frame

Iz

Ix

IO
Iy

BO By

Bz







Bx

Figure 1. The relation between two frames.

Given that the position dynamics are influenced by the attitude, the attitude can be
treated as a virtual control for the system. To simplify the design of the position controller,
we define a virtual input ui as follows [51,52]:

ui := TiRie3 − mige3. (2)

Substituting Equation (2) into the original position dynamics Equation (1), the position
dynamics can be rewritten as

mi p̈i = −Di ṗi + ui. (3)

This reformulated equation simplifies the design of the position control law by isolat-
ing ui as the key control variable.

For the attitude dynamics, the Euler angles of the ith UAV are denoted by ηi =

(ϕi, θi, ψi), where ϕi, θi, and ψi represent the roll, pitch, and yaw, respectively. The angular
velocity ωi = [ωi,x, ωi,y, ωi,z]

⊤ is expressed in the body frame FBi . The attitude dynamics
can be described as follows [51]:

η̇i = Φi(ηi)ωi,

Mi(ηi)η̈i + Ci(ηi, η̇i)η̇i = Ψ(ηi)
⊤τi,

(4)

where Mi(ηi) = Ψi(ηi)
⊤ JiΨi(ηi); Ji is the inertial matrix of the UAV described in the body

frame FBi ; Ψi(ηi) = Φ−1
i (ηi) where Φi(ηi) is a transformation matrix related to the Euler
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angles; τi represents the torque produced by the four rotors in the body frame FBi ; and the
Euler matrix Φi(ηi) is given by

Φi(ηi) =

 1 sin ϕi sin θi/ cos θi cos ϕi sin θi/ cos θi

0 cos ϕi − sin ϕi

0 sin ϕi/ cos θi cos ϕi/ cos θi

.

The Coriolis and centrifugal matrix Ci(ηi, η̇i) for the ith UAV is given by

Ci(ηi, η̇i) = −Ψ(ηi)
⊤ JiΨ̇(ηi) + Ψ(ηi)

⊤[Ψ(ηi)η̇i]
× JiΨ(ηi), (5)

where x× is a skew symmetric matrix and is defined as follows:

x× =

 0 −x3 x2

x3 0 −x1

−x2 x1 0

.

This matrix accounts for the Coriolis and centrifugal forces acting on the UAV, consid-
ering its angular velocity η̇i and the inertia matrix Ji.

Remark 1. As shown in (3), the real-time distances between the UAVs determine the elements of
the adjacency matrix in (6). The key challenge in designing a distributed controller is how to preserve
the connectivity of this dynamic graph throughout operation, ensuring that the communication
network remains functional despite changes in the UAVs’ positions.

2.2. Dynamic Communication Network Modeling

The dynamic communication network plays a crucial rule in the distributed for-
mation control of multiple UAVs. The network of all UAVs can be modeled using a
distance-induced proximity graph. This proximity graph is represented as G(V , E), where
V = {1, 2, . . . , N} denotes the vertex set, corresponding to the UAVs, and E ⊂ V × V
denotes the edge set, representing the communication links between the UAVs. In a graph,
a path is characterized by a sequence of connected edges, such as (i1, i2), (i2, i3), . . ., where
each edge (ik, ik+1) belongs to the set E with k = 1, 2, . . . . The graph G is referred to as
connected when there is at least one path linking any two vertices in V . The communication
between the UAVs and the detection between UAVs and obstacles are shown in Figure 2.
UAVs within the communication range can communicate with each other, and when an
obstacle enters the detection range of the UAV, the UAV can obtain information about
the obstacle.



i

j l

o

ikp

Figure 2. Inter-UAV communication and obstacle detection.
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Suppose that all UAVs share the same communication distance ∆, and the minimum
allowable distance between UAV i and j is denoted by δij. When the distance between
UAVs i and j falls below ∆ but exceeds δij, then the edge (i, j) is included in the edge set E .
If not, the edge (i, j) is excluded from E . Using the definition of the edge, the corresponding
adjacency matrix A(G) = [aij] ∈ RN×N for the graph G is defined as

aij(t) =

1, if ||pij(t)|| ∈ (δij + ϵ, ∆ − ϵ), i, j ∈ V},

0, otherwise,
(6)

where pij(t) = pi(t)− pj(t) denotes the relative displacement of UAVs i and j, and ϵ > 0 is
a small constant. The Laplacian matrix L(G) = [lij] ∈ RN×N is defined using the adjacency
matrix A(G) as follows:

lij =

∑N
j=1 aij, if i = j,

−aij, otherwise.

Suppose the minimum allowable distance between UAV i and obstacle k is δo
ik. When

the distance between UAV i and obstacle l falls below ∆ but exceeds δo
ik, then the edge (i, k)

is included in the edge set E o. If not, the edge (i, k) is excluded from E o. The adjacency
matrix B = [bik] ∈ RN×M characterizes the interactions between UAV i and obstacle k and
is defined as follows:

bik(t) =

1, if ||po
ik(t)|| ∈ (δo

ik + ϵ, ∆ − ϵ), i ∈ V , k ∈ V o},

0, otherwise,
(7)

where po
ik(t) = pi(t)− po

k(t) denotes the displacement between UAV i and obstacle k, V o

denotes the set of the obstacles, and M denotes the number of obstacles.

Remark 2. In this study, we consider the communication distance limitation because it significantly
impacts the performance of distributed controllers for multiple UAVs. The communication distance
affects the reliability of data transmission, and factors like long distances or bad weather can
cause packet loss, delays, or reduced quality. As a result, UAVs typically have a limited reliable
communication range. While the focus of this research is on theoretical modeling and control
strategies, considering the communication distance is crucial for improving the practical application
of the system in dynamic environments. Including these limitations makes the work more relevant
to real-world engineering challenges.

2.3. The Control Objective

Our objective in this paper is to engineer a distributed controller that directs the
quadrotor UAVs into a desired formation, overcoming limitations such as restricted com-
munication distances and moving obstacles. We establish our controller design based on
this crucial lemma and several assumptions:

Lemma 1. If the graph G is connected, then its Laplacian matrix L(G) is positive semidefinite [53].

Assumption 1. As stipulated by (6), the initial graph G(0) is inherently a connected graph.

Assumption 2. The desired formation pd must adhere to the following criteria:

dij <∆, ∀i ∈ {1, . . . , N}, j ∈ Ni,

dij >δij, ∀i, j ∈ {1, . . . , N},
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where dij = ||pd
i − pd

j || denotes the intended distance between UAVs i and j.

Assumption 3. Obstacles impact the UAVs temporarily, with their effects limited to a bounded
duration, and their velocities remain within a defined range.

Remark 3. In the prevailing research on distributed formation control of UAVs, it is commonly
accepted that the network remains consistently connected [47–49,54,55]. Contrarily, Assumption 1
modifies this to require only initial connectivity rather than continuous connectivity. Assumption 2,
also referenced in [44], confirms that the specified formation is achievable. Furthermore, Assumption 3
guarantees that obstacles do not prevent UAVs from attaining the desired formation, substantiating the
validity of these assumptions.

3. Distributed Controller Design
The control system for the quadrotor UAVs is segregated into position and attitude

subsystems, acknowledging the cascading characteristics of these vehicles. The distributed
formation controller for the position subsystem is derived using a series of novel artificial
potential functions and the dynamic surface control technique. Figure 3 shows the working
process of the proposed connectivity preservation controllers.
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Figure 3. Working process of the proposed controllers.

3.1. Artificial Potential Functions

Two artificial potential functions were developed: a formation potential function, P f
ij ,

and an obstacle avoidance potential function, Po
ik. The function P f

ij is used to preserve
connectivity in the network, the collisions between the UAVs, and the desired formation.
The formation potential function P f

ij is defined according to the initial distance between
two UAVs.

(1) If
∥∥pij(0)

∥∥ ∈ [δij, ∆), P f
ij is defined as follows [56,57]:

P f
ij
(∥∥pij

∥∥) = { Pr(∥∥pij
∥∥), ∥∥pij(t)

∥∥ ∈
(
δij, dij

]
Pa(∥∥pij

∥∥), ∥∥pij(t)
∥∥ ∈

[
dij, ∆

) ,

where Pr(∥∥pij
∥∥) denotes the repulsive potential function, and Pa(∥∥pij

∥∥) represents
the attractive potential function, with both mediating the interactions between UAVs
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based on their distances. The three potential functions satisfy the following condi-
tions:

(a) P f
ij
(∥∥pij

∥∥) is a continuous and differentiable nonnegative function of ||pij(t)||;
(b) P f

ij
(∥∥pij

∥∥) is symmetric and achieves its unique minimum while ||pij(t)|| = dij;

(c) Pr(∥∥pij
∥∥) monotonically decreases with respect to ∥pij∥, and Pr

ij → ∞ as
||pij(t)|| → δij;

(d) Pa(∥∥pij
∥∥) monotonically decreases with respect to

∥∥pij
∥∥, and Pa

ij → ∞ as
||pij(t)|| → ∆.

(2) If
∥∥pij(0)

∥∥ ∈ (∆, ∞), P f
ij is defined as [56,57]

P f
ij
(∥∥pij

∥∥) =


Pr(∥∥pij
∥∥), ∥∥pij(t)

∥∥ ∈
(
δij, dij

]
Pd(∥∥pij

∥∥), ∥∥pij(t)
∥∥ ∈

[
dij, ∆

)
Pd(∆),

∥∥pij(t)
∥∥ ∈ [∆, ∞)

,

where Pd(∥∥pij
∥∥) is the desired formation potential function. P f

ij
(∥∥pij

∥∥) and

Pr(∥∥pij
∥∥) satisfy the above conditions (a)–(c). Pd(∥∥pij

∥∥) monotonically increases
with respect to

∥∥pij
∥∥, and Pd

ij → S as ||pij(t)|| → ∆, where S is a positive constant.

The obstacle avoidance potential function, Po
ik, is specifically designed to prevent

collisions between the UAVs and the dynamic obstacles. The function Po
ik is given as

follows [57]:

Po
ik(∥po

ik∥) =
{

Pr
ij
(∥∥po

ik

∥∥), ∥∥po
ik(t)

∥∥ ∈
(
δo

ik + ϵ, do
ik
]

0,
∥∥po

ik(t)
∥∥ ∈

[
do

ik, ∞
) ,

where the term do
ik refers to the critical distance that triggers the obstacle avoidance potential

function for UAV i and obstacle k. Pr
ij
(∥∥po

ik

∥∥) satisfies

(1) Pr
ik(||p

o
ik(t)||) being a continuous and differentiable nonnegative function of ||po

ik(t)||;
(2) Pr

ik(||p
o
ik(t)||) monotonically decreasing with respect to ||po

ik(t)||, while ||po
ik(t)|| ∈

[δo
ik, do

ik];
(3) Pr

ik(||p
o
ik(t)||) → ∞ as ||po

ik(t)|| → δo
ik, and Pr

ik → 0 as ||po
ik(t)|| → do

ik.

3.2. Position Controller Design and Analysis

We define the following coordinate transformation for each UAV:

si = ṗi − v̂i (i = 1, . . . , N) (8)

where the engineered virtual velocity item v̂i is developed to help avoid potential collisions
with obstacles as follows:

v̂i = −∇pi P + α2

M

∑
k=1

bikwik, (9)

where the artificial potential function P is defined as follows [57]:

P = α1

N

∑
i=1

N

∑
j=1

aijP
f

ij(||pij(t)||) + α2

N

∑
i=1

M

∑
k=1

bikPo
ik(||p

o
ik(t)||), (10)

where α1 and α2 are positive constants, and

wik,q =


(∇pi Po

ik)q ṗo
k,q

(∇pi P)q
, if (∇pi P

o
ik)q ̸= 0,

0, otherwise,
q = x, y, z, (11)
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where (∇pi P
o
ik)q and ṗo

kq are the components of ∇pi P
o
ik and ṗo

k in direction q, respectively.

Remark 4. Consider a scenario where (∇pi P)q is zero, rendering the expression for wik,q undefined
due to its reliance on a non-zero denominator. To address this, one can modify the denominator to
include a small positive constant ν when zero is encountered. This adjustment is seldom required,
however, as the presence of ∇pi P

o within ∇pi P usually ensures non-zero values.

Following the introduction of the potential functions, the distributed position con-
troller is constructed as detailed below. This design integrates the essential components
of the potential functions to manage the UAVs’ spatial dynamics effectively, focusing on
achieving the desired formations while avoiding obstacles and preserving connectivity.

ui = −α3

N

∑
j=1

aij(si − sj)− α4si − βisgn(si)−∇pi P + Di ṗi, (12)

where α3, α4, and βi are positive constants.
We define a low-pass filter in the context of UAV control systems as illustrated in the

following equation [58,59]:
λḣi = −hi + v̂i, (13)

where λ is a small constant. This setup allows for a dynamic response where the filter’s
output, hi, approximates the behavior of the input v̂i over time.

Selecting an appropriate value for λ, similar to the methodology in [60], leads to the
approximation

hi ≈ [v̂i]eq, (14)

where the subscript “eq” denotes the equivalent value of v̂i. This indicates that hi converges
to a value close to the desired velocity input v̂i. Then, we have the following inequality [58]:

mi

∥∥∥∥ d
dt

v̂i

∥∥∥∥ = mi||ḣi|| ≤ γi, (15)

where mi represents the mass of the UAV, and γi is a predefined positive constant that limits
the maximum allowable change in velocity, ensuring that the system’s response remains
within safe operational limits. According to the decomposition principle of E.S. Pyatnitsky,
Equation (15) guarantees the controllability of the Lagrangian dynamical system. This
setup effectively filters out high-frequency components from the velocity signals, thus
smoothing the UAV’s motion and improving its stability and the control accuracy.

Theorem 1. Consider a system defined by (3) involving N UAVs and M dynamic obstacles,
with the adjacency matrices derived from Equations (6) and (7). Assuming that Assumptions 1–3
are satisfied and choosing βi > γi, the implementation of the distributed controller (12) guarantees
the achievement of the following objectives:

(1) If the initial distance between any two connected UAVs (i, j) ∈ E is less than ∆,
i.e.,

∣∣pij(0)
∣∣ < ∆, then

∣∣pij(t)
∣∣ < ∆ for all t > 0;

(2) The distance between any two UAVs i, j ∈ V remains greater than δij at all times,
i.e.,

∣∣pij(t)
∣∣ > δij for all t > 0;

(3) The distance between any UAV i ∈ V and any obstacle k ∈ V o remains greater than δo
ik at

all times, i.e.,
∣∣po

ik(t)
∣∣ > δo

ik for all t > 0;
(4) As time progresses towards infinity, the distance between each pair of connected UAVs

(i, j) ∈ E converges to dij, and the velocity of each UAV i = 1, 2, . . . , N approaches zero,
i.e.,

∣∣pij(t)
∣∣→ dij and ṗi(t) → 0 as t → ∞.
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Proof. Taking the derivative of (8) and scaling both sides by mi,

mi ṡi = mi p̈i − mi ˙̂vi (16)

Next, we integrate the control laws defined in (3) and (12) into the derived equation,
resulting in the following comprehensive dynamic model:

mi ṡi =− Di ṗi − α3

N

∑
j=1

aij(si − sj)− α4si − βisgn(si)−∇pi P + Di ṗi − mi ˙̂vi

=− α3

N

∑
j=1

aij(si − sj)− α4si − βisgn(si)−∇pi P − mi ˙̂vi

(17)

To assess the stability of this dynamic system, we propose the following Lyapunov
function candidate:

V1(t) =
1
2

N

∑
i=1

mis⊤i si. (18)

Taking the derivative of (18) and incorporating the results from (17), we derive the
following expression for the time derivative of the Lyapunov function:

V̇1(t) =
N

∑
i=1

s⊤i [−α3

N

∑
j=1

aij(si − sj)− α4si

− βisgn(si)−∇pi P − mi ˙̂vi]

=− α4

N

∑
i=1

s⊤i si − α3

N

∑
i=1

N

∑
j=1

aijs⊤i (si − sj)

−
N

∑
i=1

(∇pi P)
⊤si −

N

∑
i=1

s⊤i [βisgn(si) + mi ˙̂vi]

(19)

Now, we propose the following Lyapunov function candidate for the stability analysis:

V2(t) = V1(t) + P. (20)

where P denotes the artificial potential function defined in (10).
Taking note of the definition of P and using (19), the derivative of V2(t) is computed as

V̇2(t) =− α4

N

∑
i=1

s⊤i si − α3

N

∑
i=1

N

∑
j=1

aijs⊤i (si − sj)

−
N

∑
i=1

(∇pi P)
⊤si −

N

∑
i=1

s⊤i [βisgn(si) + mi ˙̂vi]

+
N

∑
i=1

(∇pi P)
⊤ ṗi +

M

∑
i=1

(∇po
k
P)⊤ ṗo

k

=− α4

N

∑
i=1

s⊤i si − α3

N

∑
i=1

N

∑
j=1

aijs⊤i (si − sj)

−
N

∑
i=1

s⊤i [βisgn(si) + mi ˙̂vi] +
N

∑
i=1

(∇pi P)
⊤v̂i +

M

∑
i=1

(∇po
k
P)⊤ ṗo

k.

(21)
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By using (9), Equation (21) can be rewritten as

V̇2(t) =− α4

N

∑
i=1

s⊤i si − α3

N

∑
i=1

N

∑
j=1

aijs⊤i (si − sj)−
N

∑
i=1

s⊤i [βisgn(si) + mi ˙̂vi]

−
N

∑
i=1

(∇pi P)
⊤(∇pi P) + α2

N

∑
i=1

M

∑
k=1

bik(∇pi P)
⊤wik +

M

∑
i=1

(∇po
k
P)⊤ ṗo

k.

(22)

Pre-multiplying both sides of (11) by (∇pi P)
⊤ yields

(∇pi P)
⊤wik = (∇pi P

o
ik)

⊤ ṗo
k = −(∇po

k
Po

ik)
⊤ ṗo

k. (23)

Based on (23) and βi > γi, (22) can be simplified as

V̇2(t) =− α4

N

∑
i=1

s⊤i si − α3

N

∑
i=1

N

∑
j=1

aijs⊤i (si − sj)−

N

∑
i=1

s⊤i [βisgn(si) + mi ˙̂vi]−
N

∑
i=1

(∇pi P)
⊤(∇pi P)

≤ −
N

∑
i=1

||∇pi P)||
2 − α3||[L(t)⊗ I3]|| · ||s||2 − α4||s||2.

(24)

The graph G(t) is assumed to change only at discrete times tk(k = 0, 1, . . . , t0 = 0)
and remains static within each interval [tk−1, tk). Based on Assumption 1 and Lemma 1,
the Laplacian matrix L(t) remains positive semi-definite during [t0, t1). Furthermore, we
have V̇2(t) ≤ 0 and V2(t) ≤ V2(0) while t ∈ [t0, t1). At t = t1, up to N(N − 1) UAV
links and MN UAV–obstacle links enrich the potential function P, resulting in V2(t1) <

V̄2 = V2(0) + Pmax at time t = t1, where Pmax = α1N(N − 1)
[

P f (∆ − ϵ) + P f (δij + ϵ)
]
+

α2MNPo(δo
ij + ϵ). This confirms that V2(t) remains bounded at t = t1.

Building upon the preceding analysis, V2(t) adheres to the following dynamics:

V̇2(t) ≤ −
N

∑
i=1

||∇pi P)||
2 − α3||[L(t)⊗ I3]|| · ||s||2 − α4||s||2 ≤ 0, ∀t ∈ [tk−1, tk),

V2(t1) < V̄2 = V2(0) + Pmax, t = tk.

(25)

Applying mathematical induction, we establish that

V2(t) ≤ V2(tk−1) < V̄2, ∀t ∈ [0, ∞]. (26)

This ensures the boundedness of si, P f
ij , Po

ik. The bounded nature of P f
ij and Po

ik guar-
antees that collisions are prevented and no edge in the graph G(0) is lost, thus fulfilling
objectives (1)–(3).

Further derived from (25), we see that si → 0 and ∇pi P → 0 as t → ∞. Assumption 3
ensures that α2 ∑M

k=1 bikwik = 0 as t → ∞. Given that ṗi = si −∇pi P + α2 ∑M
k=1 bikwik,

we conclude that ṗi → 0 as t → ∞. As ∇pi P → 0 and ∇pi P
o
ik → 0, it is established that

∇pi P
f

ij → 0 as t → ∞. In conjunction with the properties (a) of the formation artificial

function P f
ij and Assumption 2, ||pij|| → dij as t → ∞ for all (i, j) ∈ E . Overall, objective (4)

can be achieved. This analysis completes the proof for Theorem 1.
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3.3. Attitude Tracking Controller Design

In this section, we introduce an attitude tracking controller for the attitude subsystem,
designed to follow the desired attitude output from the position controller. Inspired by the
work [51], the total lift Ti and the desired angles ϕd

i and θd
i can be determined by

Td
i =

√
u2

i,x + u2
i,y + (ui,z + mig)

2,

ϕd
i = arcsin


(

ui,x sin ψd
i − ui,y cos ψd

i

)
Td

i

,

θd
i = arctan

(
ui,x cos ψd

i + ui,y sin ψd
i

ui,z + mig

)
.

(27)

We define the attitude tracking error as

η̃i = ηi − ηd
i , (28)

where ηd
i = [ϕd

i , θd
i , ψd

i ]. Given that ψd
i is a free variable, we simplify our analysis by setting

ψd
i = 0. Taking the derivative of (28) and using (4), the attitude error dynamics can be

written as
˙̃ηi =Φi(ηi)ωi − η̇d

i ,
¨̃ηi =− Mi(ηi)

−1Ci(ηi, η̇i)η̇i + Mi(ηi)
−1Ψ(ηi)

⊤τi − η̈d
i .

(29)

The design of the attitude tracking controller is detailed as follows:

τi = JiΨi(ηi)
[
−α5η̃i − α6 ˙̃ηi + η̈d

i

]
+ Φ⊤

i (ηi)Ci(ηi, η̇i)η̇i, (30)

where α5 and α6 are positive constants.

Theorem 2. Consider the error dynamics outlined in (29), which are governed by the attitude
tracking controller (30); the attitude error η̃i is expected to asymptotically converge to zero as t → 0.

Proof. By substituting (4) and (30) into (29), we can reformulate the attitude error dynamics
as follows:

¨̃ηi =− Mi(ηi)
−1Ci(ηi, η̇i)η̇i + Mi(ηi)

−1Ψ(ηi)
⊤Φi(ηi)

⊤Ci(ηi, η̇i)η̇i. (31)

By using the equations Mi(ηi) = Ψi(ηi)
⊤ JiΨi(ηi) and Ψi(ηi) = Φi(ηi)

−1, (31) can be
simplified as

¨̃ηi =− Mi(ηi)
−1Ci(ηi, η̇i)η̇i + Mi(ηi)

−1Ψ(ηi)
⊤Φi(ηi)

⊤Ci(ηi, η̇i)η̇i

+ Mi(ηi)
−1Ψ(ηi)

⊤ JiΨi(ηi)
[
−α5η̃i − α6 ˙̃ηi + η̈d

i

]
− η̈d

i

=− Mi(ηi)
−1Ci(ηi, η̇i)η̇i +

[
−α5η̃i − α6 ˙̃ηi + η̈d

i

]
+ Mi(ηi)

−1Ci(ηi, η̇i)η̇i − η̈d
i

=− α5η̃i − α6 ˙̃ηi.

(32)

Let us consider the following Lyapunov function candidate to analyze the stability of
the system:

V3 =
α5

2
η̃⊤i η̃i +

1
2

˙̃η⊤i ˙̃ηi. (33)
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Taking the derivative of V3 and incorporating (32), one can obtain

V̇3 = ˙̃η⊤i [α5η̃i + ¨̃ηi]

= ˙̃η⊤i
[
α5

⊤η̃i − α5η̃i − α6 ˙̃ηi

]
=− α6 ˙̃η⊤i ˙̃ηi.

(34)

Utilizing LaSalle’s invariance principle, we deduce that ˙̃ηi converges to the largest
invariance subspace where V̇3( ˙̃ηi) ≡ 0. According to (34), this condition is met specifically
if and only if ˙̃ηi ≡ 0. Therefore, ˙̃ηi → 0 as t → ∞, which further implies ¨̃ηi → 0 as
t → ∞. From (32), we can further deduce η̃i → 0. In conclusion, the attitude error η̃i

asymptotically converges to zero as t → 0, indicating the stable behavior of the control
system over time.

Remark 5. Using the fraction power functions of the errors, the attitude tracking controller (30) in
Theorem 2 can be developed as

τ̂i = JiΨi(ηi)
[
−α5 sigζ1(η̃i)− α6 sigζ2( ˙̃ηi) + η̈d

i

]
+ Φ⊤

i (ηi)Ci(ηi, η̇i)η̇i, (35)

where sigζ(x) = [sign(x1)|x1|ζ , sign(x2)|x2|ζ , . . . , sign(xn)|xn|ζ ]⊤, x = [x1, x2, . . . , xn]⊤ ∈
Rn. The exponents ζ1 ∈ (0, 1) and ζ2 = 2ζ1/(1 + ζ1) are specifically chosen to ensure robust
control dynamics. Applying the principles of homogeneous system theory and Lyapunov stability
theory, it can be rigorously proven that the controller (35) ensures finite-time convergence of the
tracking errors η̃i, as detailed in [49]. This implementation effectively demonstrates the controller’s
capability to achieve rapid and precise alignment with the desired attitude targets, underscoring its
practical efficacy and theoretical robustness.

Remark 6. In summary, the stability of the position controller was rigorously established in
the previous section, while the stability of the attitude controller was confirmed in the current
analysis. Collectively, these results validate the effectiveness of the connectivity-preserving control
law proposed in this paper for multiple UAVs. This control strategy not only ensures the stability
of individual UAVs but also effectively maintains the connectivity of the graph, demonstrating its
robustness and applicability in coordinated UAV operations.

4. Simulations
This section provides simulations to validate the effectiveness of the proposed con-

trollers discussed in Section 3. Consider a system comprising three UAVs described in
Equations (1) and (4). It is assumed that all of the UAVs share the same structure and
model parameters. The mass of each UAV is chosen as mi = 0.5 kg, while the inertial
matrices are set to Ji = Diag(0.003, 0.002, 0.0025). Additionally, the aerodynamic damp-
ing coefficients for the UAVs are specified as Di = Diag(0.01, 0.01, 0.01). The UAVs’
initial positions are defined as p1(0) = [−40,−30, 0]⊤ m, p2(0) = [−15,−40, 5]⊤m, and
p3(0) = [0,−40, 0]⊤ m, and the corresponding velocities are ṗ1(0) = [0, 0.6, 0]⊤(m/s),
ṗ2(0) = [0, 0.4, 0]⊤(m/s), and ṗ3(0) = [0, 0.1, 0]⊤(m/s). The obstacles’ initial positions
are specified as po

1(0) = [−40,−30, 0]⊤ m and po
2(0) = [−15,−40, 5]⊤m, and the velocities

are defined as the time-dependent functions ṗo
1(t) = [2 cos(0.01t),−2 sin(0.01t), 0]⊤(m/s)

and ṗo
2(t) = [0,−1, 0]⊤(m/s).

The communication radius of each UAV is set to ∆ = 50 m. The collision avoidance
distance is defined as δij = 5 m, while the obstacle avoidance distance is set to δo

ik = 5 m.
Based on Equations (6) and (7), the communication graph is illustrated in Figure 4. The
desired inter-UAV distance is set to dij = 40 m, while the active distance between the UAVs
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and obstacles is defined as do
ik = 15 m, and the desired change in the formation distance is

shown in Figure 5. These parameters ensure that Assumptions 1 and 2 are fully satisfied.
The adjacent matrix A and the Laplacian matrix L corresponding to the communication
graph are expressed as

A =

 0 1 1
1 0 1
1 1 0

 L =

 2 −1 −1
−1 2 −1
−1 −1 2

. (36)

2 3

1

Figure 4. Initial communication graph (Where the nodes denote the corresponding UAVs and the
edges denote the communication links).

1

2 3

1

2 3

12p
13p

23p 23d

13d12d

Figure 5. Formation reconfiguration.

The repulsive artificial potential Pr
ij, the attractive artificial potential function Pa

ij,

and the desired formation potential function Pd
ij are derived as follows, based on the work

of [57]:
Pr

ij =kr
[(∥∥pij

∥∥− δij
)
− dij ln

(∥∥pij
∥∥− δij

)
+dij ln

(
dij − δij

)
−
(
dij − δij

)]
,

Pa
ij =ka

[(
∆ −

∥∥pij
∥∥)− dij ln

(
∆ −

∥∥pij
∥∥)

+dij ln
(
∆ − dij

)
−
(
∆ − dij

)]
,

Pd
ij =kd − kd cos

[
π
(∥∥pij

∥∥− dij
)
/
(
∆ − dij

)]
.

(37)

The control gains for our controllers are set as follows: α1 = 1, α2 = 1, α3 = 0.1,
α4 = 0.001, α5 = 2, α6 = 3.5, and β = 0.1. The control gains for comparison of the
controllers are set as follows: kr = 1, ka = 4, kd = 0.5.

To demonstrate the effectiveness of the method in this paper, we offer two simulation
cases: The first case simultaneously achieves connectivity preservation, obstacle avoidance,
and formation control, and the second focuses solely on obstacle avoidance and formation
control. The second case uses the same controller form as that in Equation (12), with the
difference being that the potential function only considers obstacle avoidance and formation
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control. The artificial potential function for the second case is set as follows, based on the
approach presented in [56]:

P f
ij
(∥∥pij

∥∥) =


Pr(∥∥pij
∥∥), ∥∥pij(t)

∥∥ ∈
(
δij, dij

]
Pd(∥∥pij

∥∥), ∥∥pij(t)
∥∥ ∈

[
dij, ∆

)
Pd(∆),

∥∥pij(t)
∥∥ ∈ [∆, ∞)

,

where
Pr

ij =kr
[(∥∥pij

∥∥− δij
)
− dij ln

(∥∥pij
∥∥− δij

)
+dij ln

(
∆ − dij

)
−
(
∆ − dij

)]
,

Pd
ij =kd − kd cos

[
π
(∥∥pij

∥∥− dij
)
/
(
∆ − dij

)]
.

(38)

The control gains for the artificial potential functions are chosen to be the same as
those given above.

Figure 6 illustrates the distances between the UAVs, where the red line represents
the communication distance and the black line indicates the anti-collision distance. The
results show that the distances between the UAVs confirm the preservation of the graph’s
connectivity and the avoidance of collisions between all UAVs. Figure 7 highlights the
impact of omitting the attractive artificial potential functions. When the UAV group en-
counters the first obstacle, the absence of these potentials leads to disruption of the network
connectivity. In contrast, as shown in Figure 6, the controller with connectivity preservation
successfully preserves the graph’s connectivity, ensuring that all UAVs achieve the desired
inter-UAV distances. Conversely, in Figure 7, the topological network becomes discon-
nected, preventing the UAVs from reaching the desired configuration. Figures 8 and 9
illustrate that the velocity errors between all UAVs eventually converged to zero in the two
cases. Consequently, all UAVs were brought to a standstill.

0 100 200 300 400 500

Time (s)

0

20

40

60

80

100

Obstacle 1 Obstacle 2

Figure 6. Distances between UAVs with connectivity preservation.
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Obstacle 1

Figure 7. Distances between UAVs without connectivity preservation.

Time (s)

Figure 8. Velocity errors between UAVs with connectivity preservation.

Time (s)

Figure 9. Velocity errors between UAVs without connectivity preservation.
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Figures 10–13 show that the distances between the UAVs and the obstacles remain
greater than the anti-collision distance, ensuring that collisions between the UAVs and the
dynamic obstacles are successfully avoided. Figure 11 demonstrates that even without an
attraction potential function, the obstacle avoidance potential function can prevent colli-
sions with Obstacle 1. Similarly, Figure 13 shows that the distance between the UAVs and
Obstacle 2 does not activate the obstacle avoidance potential function. As a result, Obstacle
2 does not affect the UAV formation control. Figures 14 and 15 illustrate that the attitude
of all of the UAVs converges to zero over time. Additionally, Figures 16 and 17 confirm
that the attitude tracking errors, representing the difference between the desired and actual
attitudes, also converged to zero. Figures 18 and 19 depict the total thrust and rotational
forces of all UAVs, respectively, while Figures 20 and 21 further detail the rotational forces.
These results indicate that the proposed controllers can successfully achieve the desired
formation while preserving connectivity, avoiding collisions, and steering clear of obsta-
cles. In contrast, the controller without connectivity preservation only avoids obstacles
and collisions.

Consequently, comparisons between the two cases clearly demonstrate the effective-
ness of the connectivity-preserving control method proposed in this study.
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Figure 10. Distances between the UAVs and Obstacle 1 with connectivity preservation.
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Figure 11. Distances between the UAVs and Obstacle 1 without connectivity preservation.
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Figure 12. Distances between the UAVs and Obstacle 2 with connectivity preservation.
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Figure 13. Distances between the UAVs and Obstacle 2 without connectivity preservation.
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Figure 14. Attitudes of UAVs with connectivity preservation.
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Time (s)

Figure 15. Attitudes of UAVs without connectivity preservation.

Time (s)

Figure 16. Attitude tracking errors of UAVs with connectivity preservation.

Time (s)

Figure 17. Attitude tracking errors of UAVs without connectivity preservation.
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Figure 18. Total thrust of UAVs with connectivity preservation.
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Figure 19. Rotational force of UAVs with connectivity preservation.
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Figure 20. Total thrust of UAVs without connectivity preservation.
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Time (s)

Figure 21. Rotational force of UAVs without connectivity preservation.

5. Conclusions
This paper proposed a distributed formation controller for multiple UAVs operating

under communication distance constraints and in the presence of multiple dynamic ob-
stacles. Utilizing artificial potential functions and the dynamic surface control technique,
a distributed formation controller was developed specifically for quadrotor UAVs. In con-
trast to existing approaches, the proposed controller preserves the network’s connectivity
with communication distance limitations, where the communication graph is assumed
to be only initially connected. Furthermore, the controller effectively prevents collisions
between the UAVs and dynamic obstacles. In summary, the proposed distributed controller
enhances the reliability and operational safety of multiple-UAV systems. Future research
will focus on extending the connectivity preservation and obstacle avoidance framework to
heterogeneous UAVs with different communication ranges.
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